
Theor Chim Acta (1993) 84:443-455 Theoretica
Chimica Acta
© Springer-Verlag 1993

Network supercomputing:
A distributed-concurrent direct SCF scheme

Hans P. Liithi 1 and J. Alml6f 2
1 Interdisciplinary Project Center for Supercomputing, ETH Zfirich, CH-8092 Zfirich, Switzerland

2 Department of Chemistry and Minnesota Supercomputer Institute, University of Minnesota,
Minneapoiis, MN 55415, USA

Received October 1, 1991/Accepted April 15, 1992

Summary. The direct SCF algorithm has been parallelized such that the compu-
tation can be split over a number of computers. The server ("slave") machines
use all their processors in parallel to execute the tasks distributed by the client
("master"), a mode of operation best described as distributed-concurrent parallel
computing. Relatively high speedups resulting in performance of several
GigaFLOPS have been demonstrated in realistic applications with clusters of
Cray computers in dedicated mode. Since the communication and synchroniza-
tion requirements are modest, machines that are accessible via communication
services like Internet can be networked. GigaFLOPS performances during regu-
lar production hours have been obtained when combining computers located at
different centers, even if these were on both sides of the Atlantic.

Key words: SCF Distributed-concurrent parallel computing

1 Introduction

For numerically intensive applications, distributed computing is an interesting
option from several points of view. Combining a network of powerful work-
stations is one way to achieve computation at high speed for relatively low cost.
At the other end, connecting a number of supercomputers to work on the same
job is an obvious way to address the need for extreme performance. Such an
approach will allow calculations which are too large to be executed on any single
computer, even if all processors of that machine were used.

Recently, the direct SCF method as implemented in the program package
DISCO [1] has been parallelized to obtain GFLOPS performances on single,
shared memory type computers such as the Cray Y-MP/8 [2, 3]. Parallelism is
achieved by splitting the computation of the two-electron integrals and their
processing to form a Fock matrix into a number of tasks that can be executed
independently and at random order. This coarse-grain implementation of paral-
lelism is not limited to execution on one machine only. Tasks can be distributed
across several computers, each one executing a (partial) copy of the program.
Once all tasks have been issued, the client (master) machine collects all partial

444 H. P. Lfithi and J. Alml6f

Fig. 1. Connectivity graph for the client-server network.
The servers are depicted as simple units here, but may in
practice be shared-memory multiprocessor machines

Fock matrices from the servers (slaves), combines them into one and concludes
the current SCF iteration.

To communicate data and messages between client and servers, a medium
such as a communication network, a network file system (NFS) or a shared
memory device has to be available. The latter technique has been used by
Clementi and coworkers for the loosely coupled array of processors (LCAP)
systems (1983 and later), the earliest successful at tempt to distribute a computa-
tion over several machines [4, 5]. NFS and local area network based schemes
have been implemented more recently (see e.g. [6, 7]).

In the present paper we describe an implementation of the direct SCF method
for a cluster of computers connected through a network based on the TCP/IP
protocol suite. To enable the communication between client and servers, the
Sciddle communication system [8] has been used. All data or messages are
broadcast from the client to the server using socket connections. The servers do
not perform any Input /Output operations other than network communication,
and ideally the server machines are shared memory parallel computers that pro-
cess the task-packages distributed by the client using all their processors in parallel
(concurrently), a mode of operation best described as distributed-concurrent
computation. Since the servers do not communicate with each other, we obtain
a star-shaped connectivity graph between client and servers (see Fig. 1).

A relatively small amount of data is transferred during the calculation, and
thus the network communication speed need not be extreme. For this reason the
servers do not have to be geographically close to the client machine, but can be
located at different computer centers and linked through a communication
service like Internet.

The scheme presented here allows a number of computers of different types
to be linked in a heterogeneous network. The system is scaleable, with an
additive performance increase whenever a new computer is included in the
network. We show that G F L O P S performance for direct SCF calculations can
be obtained on a network of computers during regular service hours. In
dedicated mode, a peak performance of more than 3 GFLOPS has been mea-
sured on a network of Cray Y-MP computers with a total of 20 processors.

2 The communication environment

Central to any distributed application is the interface between client and servers.
Here, the Sciddle system [8] has been used for the communication environment.
Sciddle provides a small library with the most important communication primi-
tives, and allows the programmer to call procedures which are running on the
servers as if these were ordinary subroutine calls. For each server procedure, an
interface description which labels the variables of the argument list (data-type,

Network supercomputing: A distributed-concurrent direct SCF scheme 445

direction (in/out) and arraysize) has to be provided. The Sciddle compiler or
preprocessor translates this interface description to standard C code which can
be compiled and linked directly into the application program.

For the communication between client and server(s), Sciddle uses an imple-
mentation of non-blocking remote procedure calls (RPC's). The advantage of this
implementation is that the calls to the servers are asynchronous. As soon as the
client has finished writing into the socket, it can immediately start another
communication with another server. The client is not bound to wait for the
server to complete the procedure as in a regular RPC.

To run an application, a server process is started on a number of remote
machines. The servers create a socket with a port number attached to it. The
client process which is started last requests connection to the servers. When
calling a server-routine, the client writes the procedure reference number as
defined by Sciddle into the socket followed by the argument list. The server who
is listening at its socket will notice the arrival of information. It will decode the
procedure reference number to properly accept and execute the call. When
completed, the server returns the response requested in the designated format.

The client on the other hand, after having called the servers, issues a
syncronization (wait) command implemented in the Sciddle library, and then
goes to sleep. It is woken up by the UNIX kernel as soon as data have arrived
in one of the sockets. The client continues to work after having received (i.e.
read from the socket(s)) the response by any one server or by all servers. At the
end of the computation the client disconnects the servers.

The socket communication itself, however, is sequential: only one client-
server or server-client communication can take place at a time. In the present
implementation of Sciddle, the client has to wait till a server has finished the
transmission of the data, or, in the opposite direction, till the server has read all
data (except the last buffer) from its socket. The user determines the sequence
the servers are addressed. This assures, at least for the start of the computation,
that in networks with vastly different communication bandwidths no "communi-
cation backlog" can occur (see also Fig. 3 later in the text).

3 Shared memory parallel direct SCF calculation

The structure of the direct SCF algorithm is illustrated by the following
schematic diagram:

loop over groups of basis functions on atoms A
loop over groups of basis functions on atoms B

loop over groups of basis functions on atoms C
loop over groups of basis functions on atoms D

call TWOEL

call FOCK

! compute the two-electron
! integrals (A BiC D)
! update the Fockmatrix with
! the current batch of integrals

continue

This suggests a natural definition of a "task" as the calculation of a batch of
integrals (A BIC D) and the corresponding update of the Fock matrix with the
contributions from those integrals. The resulting parallel region thus comprises
the routines TWOEL and FOCK above. The calculation of the two-electron

446 H.P. Liithi and J. Alml6f

integrals in TWOEL can be arranged such that they can be evaluated indepen-
dently without loss of efficiency. The processing of the integrals in routine
FOCK, however, can lead to data dependencies, since an integral can access
Fock matrix elements which may be referenced at the same time from another
task. This problem can be resolved by having each processor update its own
copy of the Fock matrix. At the end of the loops over A, B, C, and D, when all
integrals and their contributions to the Fock matrix have been computed, the
partial Fock matrices are added into one.

Here, this scheme is implemented in a slightly different form [2]. The loops
over the groups of basis functions are unrolled, and the loop indices along with
pointers and flags which are set before the call to TWOEL are collected in a
look-up table, containing a total of sixteen entries per loop-iteration. In this
task-generation step, the call to TWOEL is omitted. TWOEL and FOCK are
called from the unrolled loop which now goes over all tasks.

In a typical application, more than 98% of the work done in a direct SCF
computation is performed in this section of the codes. For the remaining
portions of the calculation, parallel processing can very often be obtained by
using the mathematical library routines of the system.

The performance obtained, however, critically depends on how balanced the
load of tasks is. Depending on the application, the size of the tasks generated can
be quite uneven, often differing by one or two orders of magnitude. This may
cause an unbalanced load, in particular in cases where the big tasks are executed
last, thus leaving processors idle from the moment where the number of tasks left
to be processed is less than the number of processors available.

For this implementation of parallelism very high speedups resulting in
performances well beyond 1 GFLOPS have been observed. In an SCF calcula-
tion on bis-(2,6-dimethylphenyl)carbonate e.g., a 38 atom organic molecule
with no symmetry, using a 6-311G basis set (314 contracted basis functions),
more than 1.5 GFLOPS with a speedup of 7.65 on an eight processor Cray
Y-MP have been measured in dedicated mode. The wall-clock to CPU time
ratio was 7.91, a value which reflects the efficiency of a CPU-bound method
like direct SCF when running in parallel mode: 945 sec wall-clock time were
needed to complete 7515 sec of CPU time for a direct SCF calculation of this
application.

4 Distributed-concurrent direct SCF calculation

4.1 Concept

Since the tasks generated by the program can be executed independently and at
random order, they can in principle be processed simultaneously by a network of
machines. Embedded in the Sciddle communication environment, the client
process initiates the calculation, sends out the tasks to the server processes, and
finally accepts the partial results returned from the servers. Several implementa-
tions of this scheme are possible. The simplest one would be to give each server
a copy of the entire program, a copy of the input, and a list of the tasks to be
performed. We did choose a somewhat different concept which is described below.

The basic idea is to have the servers as compact as possible, and to implement
them as pure compute-servers. All Input/Output operations are performed by the
client (no files opened on the server machines). The input is read and processed

Network supercomputing: A distributed-concurrent direct SCF scheme 447

by the client, and all data are broadcast to the servers using socket communication
as implemented in Sciddle. The client does not actively participate in the two-
electron computation, and only controls the distribution of the tasks. However,
a server process may be started on the same machine that hosts the client.

The servers therefore only need a copy of the "parallel region" of the
program (routine TWOEL and FOCK) plus the interface routines for the
client/server communication.

4.2 Implementation

Figure 2 shows the structure of the distributed computation as implemented in a
prototype version of DISCO. The servers are started first and report the number
of processors of their host machine to the client once they are connected. The
client processes the input, computes the one-electron Hamiltonian, sets up the
look-up table, and forms packages of tasks. At this point the start-up phase of
the direct SCF calculation has been completed, and the client initializes the

Start Server

I s ciien' I 1

I I
Connect ~f

I ServerC°nnect 1"I #CPU's - I ServerC°nnect

I
I One-electl'on work I

I
l SendCommon

Serverlnit

I
do task-packages
WaitForServer
Call Comp_Twoel
enddo

I
GetFock

I
SCF Section

If shared data -'~'-i SendCornmon

density matrix _] ServerInit
I

I

I i' Comp_Twoel
tasks to do _ do tasks

call TWOEL
ready call FOCK

enddo
I

I

,~1 partial results [GetFock
I

[Finish 1 Disc°nnect ~1-1 Finish I Fig. 2. The structure of the distributed
direct SCF computation

448 H.P. Liithi and J. Alml6f

servers by broadcasting the contents of the shared variables needed for the
execution of their codes. After that, the density matrix, either from an initial
guess or from a previous calculation, is broadcast to the servers. When a server
acknowledges the receipt of this information, the client issues the first package of
tasks for that server.

Once the first server has computed all of its tasks, the client starts to collect
the partial Fock matrix from that server. The diagonalization of the Fock matrix
is performed by the client. This concludes the present SCF cycle. In the version
of the program discussed here, all client program code is sequential (single
processor).

4.3 Communication

Like in any other distributed memory system, the message or data passing
between client and servers, since it is a serial process, is one of the primary
concerns. Since with the present distributed computing system we plan to link
computers which are not necessarily connected through high performance com-
munication channels, but also by public networks like Internet, the client-server
communication has to be given some attention.

Apart from some handshakes between client and servers, the main portion of
communication is in the transfer of the shared variables and the density matrix
to the servers, and in the return of the partial Fock matrices to the client. In the
examples presented here, both matrices are transferred as full triangular ma-
trices. Once applications with well beyond one thousand basis functions will be
performed, the transfer of these data, more than a million words, may turn into
a significant process, and solutions will have to be sought where only parts of the
matrices are communicated.

Even if broadcast only once, the shared data communication in large
applications can be quite substantial. However, a significant fraction of these
data can be recomputed by the servers as soon as the unique shared information
(atomic coordinates, basis sets etc.) is available. This redundant computation,
including the recomputation of the look-up table, takes little time and does not
require a significant amount of extra program code. With the present version of
the program, less than 10 kwords of shared variable information are transferred
in most applications. Only a few words of information have to be transferred
with each task-package.

4.4 Load balancing

In this implementation of parallelism where the servers typically are shared memory
multiprocessor machines, a two-level load balancing problem is encountered. It
is somewhat similar to the one encountered in a three layer tree-structure parallel
computer. The distribution of packages of tasks has to be balanced to keep the
server idle time at a minimum (first-level load balancing). Similarly, a package
should be built such that a multiprocessor server can execute at a maximum internal
speedup (minimal server processor idle time; second-level load balancing).

In a high speed network of dedicated multiprocessor computers of the same
type (cluster of IBM 3090-600J or Cray Y-MP/8 e.g.), the load balancing problem
is not too different from the situation encountered in a single, shared memory

Network supercomputing: A distributed-concurrent direct SCF scheme 449

multiprocessor machine. The client will try to give each server an equally big
package with a task constellation that minimizes server processor idle times.

Currently, for a network of heterogeneous or non-dedicated machines, the
client builds packages of tasks proportional to the number of processors avail-
able in the network. Building too many packages may cause communication
overhead, and may also result in internal performance degradation for the
servers. Too few packages may cause excessive server idle times if the response
of the machines in the network varies strongly. The task-packages are issued in
an unprejudiced round-robin (or asynchronous queue) fashion: the next avail-
able server gets the next task, even if it might be advantageous to skip that server
and wait for a more responsive one to become available.

4.5 Task issuance: The "State Machine"

Since the data transfer rates of the communication network as well as the
response of the server machines may vary considerably, the client keeps track of
the state of each server. Each time a server signals availability, the client knows
what state this particular server is in, and what action to take next (transfer
density matrix, issue package of tasks, collect Fock matrix). Therefore the fastest
server may be executing the first tasks while the slowest server is still busy with
the transfer of the shared data.

This asynchronous mode of operation avoids unnecessary synchronization
points and keeps the servers as active as possible. It may occur that servers which
show poor response will never get to compute a task, since all packages have
been processed by the other servers while this server was still accepting data from
the client ("Server runaway").

5 Results and discussion

5.1 Network of dedicated machines

On a network of five Cray Y-MP computers (dedicated mode) with a total of
twenty processors, a speedup of 16.6 and a performance of 3.3 GFLOPS for
application B described in Table 1 were obtained. This cluster consisted of a
Y-MP/8, a Y-MP/6, three Y-MP 2E, and was connected via high speed commu-
nication channels (FDDI, Hyperchannel). The measurements were taken on
machines of the computing facility of Cray Research Inc. at Eagan (Minnesota).

The total communication time to pass data between the client and the
servers, approximately 100 kwords per server, was 2 sec. In the unprejudiced
round-robin mode, the speedup within the parallel region (generation of the
Fock matrix) was 16.2. Adding the 4 sec elapsed time for the diagonalization of
the Fock matrix and the conclusion of the SCF cycle, a serial process in this
version of the program, the overall speedup is reduced to 15.7. Within the
130 sec elapsed time spent in the parallel region, the two bigger servers idled for
16 and 27 sec, whereas the three two processor servers idled 22, 4 and 0 sec. The
resulting CPU idle time integral is 342 sec (17.1 sec per processor).

All task-packages were processed at a very high internal speedup. The worst
speedup observed for a single package was 7.64 for the 8 processor server
(CPU/elapsed time ratio).

450 H.P. Ltithi and J. Alml6f

Table 1. Results of the 20 processor (5 servers) network in dedicated mode for
example B (Table 2). The data refer to the parallel region (generation of the Fock
matrix) only, unless noted. For one complete direct SCF iteration add 4 sec of
wall-clock time. (In this version of DISCO the diagonalization of the Fock matrix
is a serial process)

Application:

Network:

1 processor:

20 processors:

Bis-(2,6-dimethylphenyl)-carbonate; example B

one Y-MP/8, one Y-MP/6, three Y-MP 2E
20 processors
communication: Hyperchannel/FDDI

2,094 sec wall-clock time, Speedup = 1.00
199 MFLOPS

round-robin
130 sec wall-clock time, Speedup = 16.2
3,220 MFLOPS

Static-packages:
126 sec wall-clock time, Speedup = 16.6
3,300 MFLOPS

Static packages (complete SCF cycle):
130 sec wall-clock time, Speedup = 16.2
3,220 MFEOPS

For the static distribution mode, where the client gives each server a fixed
amount of tasks proport ional to the number of CPUs of that server, a slightly
better result was obtained. The server idle times, 18 and 5 sec for the two biggest
machines, plus 43, 4 and 0 sec for the three smaller servers, indicate that the
performance of the cluster is determined by the first-level load balancing also in
this mode of task distribution. The CPU idle time integral is 268 sec (13.4 sec per
processor), resulting in a reduction of the wall-clock time of 4 sec compared to
the computat ion using round-robin package distribution. The speedup obtained
here is 16.6 with a processing speed of 3,300 MFLOPS (16.2 and 3,220 MFLOPS
for the complete SCF cycle).

The relatively big server idle times show the need for a client program with
a more sophisticated task-scheduling algorithm. Even a relatively simple al-
gorithm will help to improve the performance of the program system quite
substantially. In the round-robin calculation, twenty packages containing 1,606
tasks had been formed. The size of the packages was relatively uneven and varied
between 85 and 135 CPUsec. Taking statistics about the task size during
run-time will allow the client to control the size of the packages formed, and
optimize their distribution in the following SCF iterations. The second-level load
balancing does not appear to be a problem. DISCO tries to add small tasks
((sslss) batches of integrals e.g.) at the end of each package to reduce processor
idle times, a concept which seems to work relatively well.

5.2 Wide-area networks

The example calculations are defined in Table 2, and the machines involved in
the various "wide-area" networks are listed in Table 3. The pyridine example

Network supercomputing: A distributed-concurrent direct SCF scheme 451

Table 2. Specification of the examples used in the test calculations. The primitive basis set is from
Ref. [9], augmented with diffuse s and p functions (case B). In case A two direct SCF iterations were
performed, including the one-electron part. In case B one complete direct SCF iteration was
performed

A Pyridine (CsHsN)

C ,N
H

180
14706

451

Basis sets:

(lOs6p2d / 4s3p2d)
(5slp / 3slp)

contracted basis functions
tasks
seconds wall-clock time
(Cray Y-MP single processor, dedicated)

B Bis-(2,6-dimethylphenyl) carbonate
(C1703H18)

C,O
H

314
32131
2098

Basis sets:

(8s4p / 4s3p)
(4s / 3s)

contracted basis functions (general contraction)
tasks
seconds wall-clock time
(Cray Y-MP single processor, dedicated)

(example A in Table 2) is the biggest one in a suite of test cases used to improve
the functionality of the program system as well as to make the first performance
studies. The main objective of these early applications was not to reach impres-
sive MFLOPS rates, but to obtain information about possible communication-
bottlenecks or other shortcomings (load balancing, round-robin procedure).

Therefore this example was designed to show a relatively unfavorable com-
munication to computation ratio, and, for this small application, a very big
number of tasks. Case B is very similar to the application referenced in Sect. 3,

Table 3. List of the machines which were networked in this experiment,
and their Iocation. (MSC = Minnesota Supercomputer Center,
NCSA = National Center for Supercomputing at Urbana-Champaign,
SDSC = San Diego Supercomputer Center, EPFL and ETHZ = Swiss
Federal Institute of Technology in Lausanne and Zfirich, respectively

Machine Label Site ~ Processors

Cray-2/4-512 sc M SC 4
Cray X-MP/4-64 sf MSC 4
Cray Y-MP/4-64 uy NCSA 4
Cray-2/4-128 u2 NCSA 4
Cray Y-MP/8-64 yl SDSC 8
Cray Y-MP/2-64 cy ETHZ 2
Cray-2/4-256 c2 EPFL 4

452 H.P. Liithi and J. Alml6f

except that it uses a smaller primitive basis. This example performs about
2,100 sec of computation at a communication load of 100 kwords per server and
per iteration, whereas example A shows a communication load of 33 kwords
within only 10% as many seconds of CPU time.

For example B, using the 6 processor cluster formed by the c2 and the cy, the
"Swiss cluster", the best elapsed time observed during normal service hours
(weekend) was 666 sec. During the time of this measurement, one foreign job
on the cy and three to four jobs on the c2 (all serial jobs) were competing
for the CPUs. This elapsed time corresponds to a performance of 640 MFLOPS,
and to a performance-equivalent of 3.2 dedicated Y-MP processors. The theoret-
ical peak performance of the cluster for this example would be around
810 MFLOPS, the equivalent of slightly more than 4 Y-MP processors (for this
example DISCO is nearly twice as fast on a cy processor than on a c2 processor).

An impressive performance was observed when adding the sc and sf of the
University of Minnesota to the "Swiss network" to form a 14 processor cluster.
A best elapsed time of 353 sec corresponding to a performance of 1.2 GFLOPS
was measured for the bigger of the two applications (example B), during a period
with little competition from other users. Performances between 800 MFLOPS
and 1 GFLOPS for that cluster and that same example have been recorded
routinely.

The servers processed 5 (cy), 3 (c2), 4 (sc) and 4 (sf) task-packages. Unlike
in the experiment taken under dedicated conditions, the 16 packages formed here
were much more balanced in size (about 133 Y-MP CPU sec each). Figure 3
shows the course of the computation as a function of time ("event log").

A cluster of 6 servers based on two continents with a total of 28 processors
was the biggest network set up (see Table 4). In this application, using example
A, all machines of Table 3 except the cy were involved. The client process was

Table 4. Performance of several clusters using example run A (pyridine). In parentheses the number
of CPUs for each server. The client process is always on sc. The CPU availability is the average CPU
to wall-clock ratio measured for the execution of the individual tasks

Cluster CPUs Wall-clock Speedup CPU
time (sec) availability

a cy (1) 1 451 1.00 0.99
(Reference)

b sc (4), sf (4) 8 122 3.70 not measured

c sc (4), sf (4) 16 92 4.90 2.79, 3.28
u2 (4), uy (4) 2.05, 2.00

d sc (4), sf (4)
u2 (4), uy (4) 24 104 4.34 not measured
yl (8)

e sc (4), sf (4) 0.56, 0.54
u2 (4), uy (4) 28 390 -- 1.23, 0.90
yl (8), c2 (4) 0.90, 3.03

f sc (4), sf (4) 2.67, 3.22
u2 (4), uy (4) 20 110 4.10 2.08, 2.24
c2 (4) 3.81

Network supercomputing: A distributed-concurrent direct SCF scheme 453

server 1

server 2

server 3

server 4

client

initiali~ation--
calculation--

result transfer--

• • • m

server 1: Cray-Y/MP Zurich (2) 190%

server 2:Cray-2 Lausanne (4) 225%

server 3: Cray-X/MP Minnesota (4) 390%

server 4:Cray-2 Minnesota (4) 250%

I I I I

I

I I I

i l

I
begin

I I I

0 50 i00

I I

I I I I

I I I l

150 200 250 300
Elapsed Time [sec]

end

350 400

Fig. 3. The event log of the Switzerland-Minnesota cluster for the example-run which yielded
1.2 GFLOPS. In the figure, the client activity also includes the one-electron integral computation. The
vertical bars mark the beginning and the end of the distributed computation. The number of processors
of each machine (numbers in parentheses) and the response obtained from each server are displayed
in the text within the figure (250% indicate a net response of 2.5 processors). The figure shows the
nearly simultaneous conclusion of the computation and the transfer of the results by servers 1, 2, and
4 as well as the relative size and the impact of the (sequential) communication overhead

hosted by the sc. For this small example, the best performance (speedup),
however, was obtained by combining the University of Minnesota with the NCSA
machines (sc, sf with uy, u2), a cluster of 16 processors. The responses of the c2
and the yl were too limited to compensate for the communication overhead
introduced by these two servers.

In this set-up, the response of the c2 was limited by the transfer rate of the
socket connection (25 kBytes/sec). The yl, apart from a somewhat slow connec-
tion (typically 50 kBytes/sec), showed poor CPU availability due to a very big
user-load. The fastest machinery assembled in Table 4, the MSC-NCSA cluster
with inter-site transfer rates of 60 to 100 kBytes/sec (same as the "Swiss cluster"),
even on an example with a poor computation to communication ratio, showed
performances which would be difficult to obtain under equivalent conditions
(regular service mode) from an eight processor Cray Y-MP.

6 Extensions and future developments

At this point of development, the key factor that determines the performance of
the supercomputer network is the first-level load balancing. The measurements
under dedicated conditions show that the internal server performance does not

454 H.P. Lfithi and J Alml6f

appear to be an issue with the present implementation. The data also show that
measures like asynchronous communication (State-machine) and redundant
computation of data on the server side have drastically reduced the communica-
tion overhead in DISCO. Before that, performance degradation due to load-
balancing effects was hidden behind the communication overhead.

The size of the communication is now determined by the transfer of the
density- and Fock matrices. Molecular symmetry can be exploited to block both
matrices, such that only the lower triangle of each block has to be transferred.
The packages of tasks may also be generated such that only certain sections of
both matrices are referenced. This approach, however, might be more difficult to
implement as it will collide with load balancing issues.

In future implementations of the program system, the client program will try
to reduce sever idle times based on more sophisticated task-scheduling tech-
niques combined with the generation of different or even flexible size packages
(large packages in the beginning, smaller packages towards the end of the
computation). This scheduler, based on the statistics it takes at run-time, tries to
make predictions on the server return times, and distributes the packages
accordingly. The statistics taken will also help to generate task-packages which
allow to achieve optimal second-level load balancing in the subsequent SCF
iterations. These measures will help to increase the speedups observed quite
substantially.

Another issue that will have to be addressed is fault tolerance. The client
should be able to redistribute work that has been issued to a server that failed to
complete (connection problems, server failures etc.). A server that starts to
approach its CPU time limit should stop accepting more tasks. Operating a
(wide area) network of computers requires substantial infrastructural work from
the programmer to obtain a comfortable degree of automation. It is quite
unlikely that system software which removes this problem from the user-level,
like in local area network (LAN) distributed computing, will be available in the
very near future.

Connecting machines of different vendors will be a straightforward matter as
long as these support socket connections and as long as their performances are
within the same order of magnitude. To resolve incompatible data representa-
tions between systems, Sciddle uses the ISO/OSI XDR protocoll.

The present work demonstrates that several computers can be networked
with near-additive performance increase in direct SCF calculations. Many com-
puter centers operate several high-performance computers with compatible sys-
tems and architectures, and it may therefore be very attractive to network
these.

The main difficulty when connecting machines of different centers is not in
the communication, but in the fact that these machines may be operated and
administrated in different modes which make them difficult to combine. Large
production runs will have to be executed in batch mode. This, however, requires
that the batch-queue systems are set up in a compatible way, and that the servers
get into execution within a relatively small period of time. Combining 5 to 6
machines from 3 or 4 different centers (clusters e and f in Table 4) is not
representative for normal production operations.

The greatest impact of this work will therefore be from combining networks
of workstations and high-performance computers operated by the same center.
Networking computers based at different sites, but operated in compatible
modes, is an attractive option to perform extreme (non-routine) applications.

Network supercomputing: A distributed-concurrent direct SCF scheme 455

Acknowledgements. This work was supported by the Swiss Science Foundation (SNF), the National
Science Foundation (NSF), and the Army High Performance Computing Research Center
(AHPCRC). The distributed calculations have involved the following computer centers: ETH
Zurich, EPF Lausanne, MSC Minneapolis, NCSA Urbana-Champaign, and SDSC San Diego.
Generous grants of computer time, as weI1 as excellent technical support from personnel at these
centers have been instrumental for the successful completion of this project. The authors would also
like to thank Cray Research Inc. for providing access to a network of dedicated machines.

References

1. Alm16f J, Faegri Jr K, Feyereisen MW, Fischer T, Korsell K, Lfithi HP: DISCO, a direct SCF
and MP2 code. For reference, see e.g. Alml6f J, Faegri K, Korsell K (1982) J Comput Chem 3:385

2. L/ithi HP, Mertz JE, Feyereisen MW, Alml6f J (1992) J Comput Chem 13:160
3. Cray Research Inc. (1990) Gigaflops Awards, page 25. Computerworld, Vol. XXV, No. 26 (July

1, 1991), page 59
4. Clementi E (1990) Modern techniques in computational chemistry. Epson Science Publ, 1990,

Chap I: Folsom D, ibid, Chap 27
5. Clementi E (1988) Phil Trans R Soc Lond A 326:445. For an early application of the LCAP

system: Detrich JH, Corongiu G, Clementi E (1984) Chem Phys Lett 112:426
6. Brode S, Ahlrichs R: A distributed implementation of TURBOMOLE(DSCF) (private communi-

cation). The TURBOMOLE system is described in: Ahlrichs R, B/ir M, H/iser M, Horn H,
K61mel C (1989) Chem Phys Lett 162:165

7. Harrisson RJ, the TCGMSG message passing system, private communication
8. Sciddle adheres to the client/server model, and is based on Berkeley 4.3 BSD sockets. For

reference see: Arbenz P, Lfithi HP, Mertz JE, Scott W, Intl J High Speed Computing, in press
9. van Duijneveldt FB (1971) IBM Res Reports RJ 945

